
XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

GENERATING BREAKS IN A TRANSIT BUS CREW SCHEDULING PROBLEM

Juliette Medina
WPLEX Software Ltda.

http://www.wplex.com.br
Rod SC 401, 8600 Corporate Park bloco 5 sala 101

88050-000 Santo Antônio de Lisboa, Florianópolis SC
juliette.medina@wplex.com.br

Sylvain Fournier
WPLEX Software Ltda.

http://www.wplex.com.br
Rod SC 401, 8600 Corporate Park bloco 5 sala 101

88050-000 Santo Antônio de Lisboa, Florianópolis SC
sylvain@wplex.com.br

RESUMO

Apresentamos neste artigo uma abordagem para a geração de multiplos intervalos de des-
canso em jornadas diárias de trabalho de motoristas de ônibus urbano, de forma a atender a
nova lei federal brasileira que regulamenta a jornada de trabalho dos motoristas de veículos
rodoviários de carga e de passageiros. Para isso, usamos umaheurística dedicada e gulosa
que parte de uma jornada composta por uma sequência de viagens. Além disso o descanso
pode ter duração menor que o intervalo existente entre viagens. Mostramos, por fim, que o
algoritmo é rápido e capaz de gerar jornadas viáveis e eficientes.

PALAVRAS CHAVES . Programação de Descansos de Motorista, Programação de Tri-
pulação de Ônibus, Heurística Gulosa, Logística e Transportes.
Logística e Transportes - L&T

ABSTRACT

In this paper an approach for generating multiple breaks in daily transit bus crew workdays
is presented, so as to comply with the new Brazilian federal law that rules the workdays for
goods and passengers transportation vehicle drivers. For this matter we use a dedicated and
greedy heuristic which entry is a workday made of a sequence of trips. Moreover, a break
may have a shorter duration than the existing interval between trips. Finally, we show that
this algorithm is fast and able to generate valid and efficient workdays.

K EYWORDS. Driver Break Scheduling, Transit Bus Crew Scheduling Problem, Greedy
Heuristic, Logistics and Transportation.
Logistics and Transportation - L&T

1606

http://www.wplex.com.br
mailto:juliette.medina@wplex.com.br
http://www.wplex.com.br
mailto:sylvain@wplex.com.br


XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

1. Introduction

For a transit bus company, scheduling the bus drivers’ workdays is a difficult chal-
lenge. It is necessary to take lots of legal constraints intoaccount for each driver to be able
to work under adequate conditions. In particular, in a long duration workday (typically
over 6 hours), it is necessary to include a lunch break so thatthe driver can rest and have
his meal. In Brazil, this break can be paid or not and may have aconstrained duration.
For example, some bus companies set up the double shift workday type for some of their
drivers, in which an unpaid break splits the workday into twoparts and which duration
should usually be over 3 hours.

The Brazilian government has just passed a new labour rule number 12.619/201211

to ensure reasonable levels on drivers’ working conditions, and to reduce traffic accidents.
According to the law, the one-hour meal break can now be splitinto many shorter breaks.
Additionally, a driver has to stop and take a 15-minute breakif he has been driving for 4
hours without resting.

In section2 we briefly describe the context in which this paper takes place. Sec-
tion 3 defines the break generation problem we face, and we provide details of our solving
heuristic in section4. Some real-life results are given in section5 and in section6 we draw
some conclusions and perspectives for the work described inthis paper.

2. The Transit Bus Crew Scheduling Problem

The Transit Bus Crew Scheduling Problem is a widespread and complex optimiza-
tion problem faced by transit bus companies. The more trips have to be performed in the
company daily schedule, the more benefits are expected out ofthe use of an automatic tool
to generate the drivers’ workdays.

WPLEX Software provides an application (WPLEX-ON) to help bus companies to
schedule their day-to-day operation. In this piece of software, there are some automatic
tools, amongst which two of them produce a set of workdays. The first one generates the
set of all workdays from scratch, given the set of trips that have to be performed and the
bus schedule for a day of operation. The second one improves aset of existing workdays
by swapping several times pieces of work between two chosen workdays. In the next two
sections, we decribe the way in which these algorithms include the break generation we
deal with in this paper.

2.1. Solving the Crew Scheduling Problem from scratch

In the classical Transit Bus Crew Scheduling Problem (CSP),a set of tasks (or
pieces of work), most of which are bus trips, must be performed by drivers, minimizing
the crew total cost. Because of the number of workday constraints imposed by the law
and sometimes by the transit bus company and the difficult calculation of a single workday
cost, we formulate it as a widely used set partionning formulation, as described byFournier
(2009).

1http://www.planalto.gov.br/ccivil_03/_Ato2011-2014/2012/Lei/L12619.htm

1607

http://www.planalto.gov.br/ccivil_03/_Ato2011-2014/2012/Lei/L12619.htm


XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

Let T be the set of tasks to perform. LetI(t) be the set of workdays covering task
t ∈ T , andI be the set of all already generated workdays. Every binary variablexi denotes
a possible workday, and equals 1 if and only if workdayi is part of the solution, andci is
this workday cost. The CSP can be formulated as follows:

min
∑

i∈I

ci · xi (1)

∑

i∈I(t)

xi = 1 , ∀t ∈ T (2)

xi ∈ {0, 1} , ∀i ∈ I (3)

In our Branch-and-Price procedure, we generate everyxi variable from the set of
tasks (or pieces of work) that the resulting workday would cover, using a dedicated sub-
problem. At each such generation, the algorithm needs to determine:

• if it is possible toschedule breaksin the workday idle time (time periods between
the tasks),
• if the resulting workday (with such breaks) would be valid regarding the constraints

defined in section3,
• the cost of the resulting workday, if it is valid.

If the new workday is valid and satisfies the condition on its cost defined in the column
generation process, it is added to the variable setI for further use in the algorithm.

2.2. Improving the crew using Local Search

WPLEX-ON also allows its user to generate a cheaper crew froman already manu-
ally set crew though a sequence of simple local search moves.At each step, two workdays
are chosen and in both workdays, a task set is selected for a swap attempt with the other
workday. For each such attempt, the following steps are applied:

1. swap a worday task set with the other workday task set, if possible,
2. redefine the breaksfor both workdays,
3. determine if the new workdays are valid,
4. compute the cost of both resulting workdays.

A First-improvement strategy is applied: if the two new workdays are overall cheaper than
the former ones, the move is performed and the algorithm goesforward to the next step.
Otherwise, another swapping move is tested (with other tasksets or workdays) until no
more improving move is found.

3. Generating breaks in a Transit Bus Crew Scheduling Problem

Meal break scheduling has often been tackled as a subproblemof Shift Scheduling
(such as inRekik et al.(2010) andMusliu et al.(2009)) where each operator has a defined
workday time window and breaks must be inserted to cut this time window into several
working parts. One of the constraints is the staff requirements per period: a minimum
number of employees must be present at any time. In the Crew Scheduling Problem, some
authors (such asChen et al.(2013)) restrict the breaks to a given time period (lunch and

1608



XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

dinner time). Our case is similar but here the idle time between each couple of tasks defines
several possible time windows where can be defined several breaks. These time windows
are different for every workday, as every workday has its ownset of tasks to be performed.

Each driver’s workday is composed of several pieces of work which can be made
of trips, deadheads or other events such as bus preparation and inspection at the beginning
of the workday. We define each piece of worki by its time period[Si, Ei]. Therefore, each
possible break interval is given byIi = [Ei, Si+1] wherei ∈ [1, n− 1].

Let’s consider an example with a workday made of 9 pieces of work (see figure1).
In our example, the first piece of work is defined by time period[S1, E1] = [0, 20].

Figure 1. Workday pieces of work

[0 20] 55] [80 112] [115140] [175185][192 225] [261[25

3220 30 25 10 33 30

291] [311

19

330]

40

[339 379]

The breaks intervals are given by (see figure2):
I1 : [E1 = 20, S2 = 25] , I2 : [E2 = 55, S3 = 80] , I3 : [E3 = 112, S4 = 115] , ...

Figure 2. Possible break intervals

[0 20] [25 55] [80 140] [175185][192 225] [261

36735255 331030

291]

30 20 19

[311 330]

9

[339 379]

4032 3 25

112][115

20

I1 I2 I4 I5 I6 I7 I8I3

In addition to thesen − 1 inter-task intervals, a break intervalIn, called “post-
workday” break interval, may be defined at the end of the workday (after then-th piece
of work), in case it is impossible to define a valid workday using merely the inter-task
intervals. However this should be avoided as it doesn’t makesense to consider a break as a
resting period at the end of the workday. That is why this break is introduced in the breaks
set only if there is no other solution and has an upper boundPmax on its end time.

For thei-th such break interval (Ii, i ∈ [1, n]), we denote:

• xi a binary variable usch that:

xi =

{

1 if a break is defined inside the interval,

0 otherwise.
(4)

• the related break defined by its start and end dates:Bi = [αi, βi] ⊆ Ii = [Ei, Si+1].

If an intervalIi is not chosen to contain a break, by convention we set the corre-
sponding break’s start time and end time to 0 (see constraint(5)). Constraint (6) states that
any break must be included in the corresponding interval:

∀i ∈ [1, n], if xi = 0 thenαi = βi = 0 (5)

∀i ∈ [1, n− 1], if xi = 1 thenEi ≤ αi < βi ≤ Si+1 (6)

Note that in usual Crew Scheduling Problems, it is not clearly stated that the breaks
may be shorter than the whole interval between pieces of work(meaning thatBi = Ii)

1609



XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

although in real-life schedules, drivers may be idle for some time before and after their
breaks. This is nonetheless an important feature in our problem definition.

Without loss of generality, we consider that the workday starts at time 0 and ends
atEn + (βn − αn), which is the end time of the last piece of work or of the post-workday
break, if any.w is the total workday duration for which the driver is paid. Itis important to
notice thatw < En in the case of unpaid breaks (as will be underlined in constraint (13)).

N ′ is the set of indices for the chosen break intervals:N ′ = {i ∈ [1, n]|xi = 1}. In
addition, we introduce the following indices:

• first = minN ′ the first interval containing a break in the solution,
• last = maxN ′ the last interval containing a break,
• i+ = minj>iN

′ the interval inN ′ just afteri ∈ N ′,

3.1. Constraints

• lfirst andufirst lower and upper bounds on the duration of the first resulting piece
of work in the driver’s workday:

lfirst ≤ αfirst ≤ ufirst (7)

• llast andulast lower and upper bounds on the duration of the last resulting piece of
work. In case a post-workday break is necessary to generate avalid workday, this
constraint doesn’t hold:

llast ≤ En − βlast ≤ ulast (8)
• linter anduinter lower and upper bounds on the durations of each intermediatere-

sulting piece of work:

∀i ∈ [1, n− 1], if xi = 1 thenlinter ≤ αi+ − βi ≤ uinter (9)

• bmin minimum break duration:

∀i ∈ [1, n], bmin ≤ βi − αi (10)

• btotal required total duration for the break set:
n

∑

i=1

(βi − αi) = btotal (11)

• Post-workday break start time and end time (if any):

En ≤ αn < βn ≤ min(Pmax;En + btotal) (12)

• wmin andwmax minimum and maximum workday durations:

wmin ≤ w ≤ wmax with w =











En + (βn − αn) if the breaks are paid,

En −
n

∑

i=1

(βi − αi) otherwise.
(13)

• nmax the maximum number of breaks.
n

∑

i=1

xi ≤ nmax (14)

Note that ifnmax = 0, the problem is trivial and ifnmax = 1, constraint (9) doesn’t
hold. In our example, the constants values are defined in table 1. Moreover, we suppose
the breaks are unpaid. An example of valid break set is given on figure3.

1610



XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

Table 1. Symbol definitions and values in the example

Symbol Definition Value
[Si, Ei] [start,end] time for piece of worki
Ii break interval between pieces of worki andi+ 1
n total number of possible break intervals 9
nmax maximum number of breaks 5
[lfirst, ufirst] [lower,upper] bound on the first piece of work duration [30,60]
[llast, ulast] [lower,upper] bound on the last piece of work duration [30,70]
[linter, uinter] [lower,upper] bound for each intermediate piece of work[12,120]
wmin/wmax minimum / maximum workday duration 289 / 480
bmin/b

′

min minimum break duration before / after preprocessing 5 / 5
btotal/b

′

total total break duration before / after preprocessing 300 / 90
Pmax maximum post-workday end time (if any) 390
xi binary variable indicating if intervalIi is in the solution
Bi break associated with intervalIi
[αi, βi] [start,end] time for breakBi

w total workday duration
αfirst first break start time
βlast last break end time
N ′ set of chosen break intervals

Figure 3. Example of valid break set

[0 20] [25 55] 140] [175185][192 225] [261

7

291]

19

[311 330]

9

[339 379]

40

112][115

B2 B5 B7 B8

2020

[80

55 110 35 3034

3.2. Objectives

The main goal is to generate a break set satisfying the constraints that have just
been described. However some secundary objectives can be defined in order to make the
driver’s workday easier to be performed.

• Minimize the “post-workday” break duration (if any):

min (βn − αn) (15)

• Minimize the number of breaks: it is better for the drivers tohave few long breaks
than several short breaks:

min

n
∑

i=1

xi (16)

• Maximize the duration of the longest break:

max

(

max
i∈N ′

(βi − αi)

)

(17)

1611



XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

4. Dedicated multi-stage heuristic

To solve our problem, we use a dedicated heuristic to generate breaks because we
need a fast algorithm which would work as an additional step in a complex Crew Schedul-
ing Problem. Our heuristic is greedy and returns a break set if and only if it results in a
valid driver’s workday. The general procedure is describedin algorithm1.

Algorithm 1 : Generate the workday breaks

if UnpaidBreaksthen1

UpdateBreakConstraints()2

end3

GenerateValidIntervalSet()see algorithm 24

if NOT IsValidIntervalSetthen5

CreatePostWorkdayBreak()6

GenerateValidIntervalSet()see algorithm 27

ReducePostWorkdayBreakDuration()8

end9

RemoveUnnecessaryIntervals()10

SetUpBreakDurations()11

Algorithm 2 : Generate valid interval set

forall i ∈ [1, n− 1] do1

xi ← 12

αi ← Ei3

βi ← Si+14

end5

RemoveTooShortIntervals()6

FindFirstPossibleInterval()see algorithm 37

FindLastPossibleInterval()8

RemoveIntervalUntilValidBreakSet()9

4.1. Preprocessing step

In a preprocessing step, we update the break time constraints if the breaks are un-
paid, using the total working time constraints: indeed, in this case, the total workday dura-
tion has to take into account the total break duration, as previously stated in constraint (13).
If the total break duration is too long, the minimum workday constraint defined bywmin

(left-hand side of constraint (13)) can be violated.

Similarly, btotal is updated using the fact that a too long total break durationcan
result in a too short workday. Applying the preprocessing update to our example (recall
that the breaks are unpaid):

b′min = max {bmin;En − wmax} = max {5; 379− 480} = 5

1612



XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

bmin is unmodified because the workday durationw was already valid.

b′total = min {btotal;En − wmin} = min {300; 379− 289} = 90

In this case, thebtotal is updated because if the total break duration is over 90,w will
be shorter thanwmin. This new value forbtotal is now the longest duration for which
constraint (13) onwmin is satisfied.

4.2. Defining the first and last break interval candidates

Algorithm 3 : Find The First Possible Break

i← 11

FirstBreakFound← FALSE2

while NOT FirstBreakFound OR i 6= n− 1 do3

if Si+1 −max{Ei; lfirst} ≥ b′min then4

αi ← max{Ei; lfirst}5

βi ← Si+16

FirstBreakFound← TRUE7

else8

xi ← 09

end10

i← i+ 111

end12

In algorithm 3 we determine the earliest starting date for the first break sothat
constraint (7) is not violated, as well as the first break interval candidate. We apply the
same kind of procedure for constraint (8) dealing with the last break interval.

In our example, wherelfirst = 30 andufirst = 60, I1 can’t be in the solution
becauseE1 = 25 ≤ lfirst = 30. As a consequence, the first break interval candidate isI2
(see figure4) and the value forα2 may be up to60 = ufirst, therefore it is the only possible
first interval (meaning necessarilyx2 = 1).

Figure 4. After eliminating the impossible first break inter val I1

[0 55] [80 140] [175185][192 225] [261

3673525 3310

291]

30 20 19

[311 330]

9

[339 379]

4060

I1 I2

55

4.3. Generating a valid break interval set

At this point, we still have to consider the lower and upper bounds on each inter-
mediate piece of work (constraints (9)), and constraints (14) on the maximum number of
breaks. Here constraint (11) is relaxed and replaced with a lower bound on the total break
time:

n
∑

i=1

(βi − αi) ≥ b′total (18)

1613



XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

Constraint (11) will only be considered again at the last stage of our algorithm (see further
section4.5). We define an interval set asvalid if it satisfies all the constraints defined in
section3.1considering this last constraint (18) instead of constraint (11).

We try to discard every interval, starting with the shortestones, until the interval set
becomes valid. In our example, our interval set is not valid:constraint (9) with linter = 12
is not fulfilled beetween breaks intervalsI4 andI5: (E5 − S5) = 10 < linter.

We start removing the shortest break interval which isI5. Our set is now valid (see
figure5): (E6−S5) = 43 ≥ linter soI4 andI6 can be consecutive intervals (4+ = 6). Note
that it may still have been possible to include break [187,192] in the solution. However our
algorithm considers it is unnecessary regarding all the constraints.

Figure 5. A valid break interval set

[0 55] [80 140] [175 225] [261

363525

291]

30 20 19

[311 330]

9

[339 379]

406055 50

I4 I5

4.4. Removing unnecessary break intervals

We try to remove unnecessary breaks intervals starting fromthe shortest to the
longest (in our exampleI8, I7, I2, I4, I6) in order to keep the longest intervals as far as
possible, until the interval set is no longer valid. In our example:

• It is impossible to removeI8 and setx8 = 0 as constraint (8) onulast = 60 would
not be fulfilled any more:(E9 − S8) = (379− 311) = 68 > ulast.
• On the other hand,I7 can be discarded without violating any constraint (see fig-

ure6).
• As was already stated in section4.2, I2 must be kept in the solution.
• I4 andI6 also can’t be removed because of constraints (9) onuinter = 120.

Figure 6. After removing the unnecessary break intervals

[0 55] [80 140] [175 225] [261

363525

330]

9

[339 379]

406055 50

I8I7I6I4I2

69

4.5. Determining breaks inside the chosen intervals

At this point, the interval set is minimal, which means that no interval can be re-
moved without violating at least one constraint. We now needto reconsider constraint (11)
and set values forαi andβi, ∀i ∈ N ′. Every break duration is reduced, starting with the
shortest ones. In our example, the total break time is:∀i ∈ N ′, T =

∑n

i=1(βi−αi) = 105.
Here, the total duration that has to be removed from the breaks isTrem = T − b′total = 15
(see figure7).

• We first reduce the duration of breakB8: it can be shrunk to 5 minutes.
• B2 can be reduced as well: it will last 14 minutes (see the final solution given on

figure7).

1614



XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

5. Computational results

In this section we aim to show two behaviours. First, our algorithm should be able
to run very fast as it must be applied every time a new workday is generated from any set
of pieces of work: it must be determined if it is possible to include breaks to make the
workday valid. Second, it should give a cheaper solution than a similar algorithm where
the breaks are restricted to the whole intervals between pieces of work.

For that matter, we run the whole Crew Scheduling algorithm that includes the
break generation for real-life instances and table2 shows the results we obtained. Our
algorithm is written in Java 1.6 and for these tests we used anIntel Core2 Quad CPU
Q8400 processor in a 8 GB memory PC.

Table 2. Running instances of the Transit Bus Crew Schedulin g Problem

Instance # Pieces # Workdays Cost (hh:)mm:ss # Steps # Break calls
CS1 2570 349 35458 02:46:52 250 32.106

CS2 2570 354 36014 03:49:49 515 58.106

LS3 2570 343 35458 03:08:24 90 138489
CS4 104 28 15085 00:01 2 916
CS5 104 45 22494 00:01 2 1002
LS6 104 26 14478 00:02 9 822
LS7 206 44 4600 00:17 181 2578
LS8 598 41 4847 00:22 175 8382
LS 206 43 4473 00:07 8 1301

CS12 206 43 4509 06:17 758 3467045
CS9 598 184 17931 07:14 174 2657004

CS9-I 598 183 17996 06:44 222 952702
CS10 206 181 17934 00:17 69 19365

CS10-I 206 182 18048 00:02 4 729
CS11 598 44 4645 40:52 519 17106388

CS11-I 598 41 4741 26:04 739 8169161

The first column is the instance identifier. All the instanceswith the “CS” prefix are
regular Crew Scheduling instances (see section2.1), whereas instances with the “LS” prefix
have been run under a local search approach, where a set of workdays already exists and
is improved by simple local search moves (see section2.2). In both cases, the algorithm
has to validate each time it generates a new workday: it triesto insert breaks using the
algorithm described in this paper and if such breaks are created successfully, the workday
is kept for further steps of the global algorithm. All the instances are real-life customer
schedules. Note for example that CS1 and CS2 is the same instance run using different
optimization parameters.

Figure 7. Final solution

[0 55] [80 140] [175 225] [261

3635

291] [311 330][339 379]

4055 5014 71 573

B8B2

1615



XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

The second column shows how many pieces of work there are (overall) in the given
instance. From the third column on, the information is aboutsolving the Crew Scheduling
model:

• the number of workdays in the final solution (third column),
• the final solution cost in Brazilian R$ (fourth column),
• the total processing time in (hours,) minutes and seconds (fifth column),
• the number of steps of the Crew Scheduling algorithm, which is basically every

time it reaches a new solution, possibly fractionary (sixthcolumn),
• the number of calls of the Break Scheduling algorithm described in this paper (sev-

enth column).

Note that from columns 2 and 3, the average number of pieces ofwork per driver
can be calculated for each instance to get an insight of the average size of each break
generation problem that has to be solved.

It can first be noticed that the break generation algorithm iscalled a huge number
of times, usually over 3000 times per second, which was expected. Note that it can give us
an upper bound on the average processing time of our break generation, as solving Crew
Scheduling implies a lot of other procedures. It confirms that our break generation is really
fast and succeeds in running a lot of times without giving a too bad impact on the overall
processing time.

Furthermore, on the three last line groups in table2, we compare an instance CSa
with the same instance CSa-I that is solved using a simple break generator where every
break is the whole interval between the pieces of work. In thecase of our algorithm, the
solution cost obtained is lower. In some cases (such as CS9),our heuristic resulted in more
workdays in the final solution than without using the heuristic. In fact, what matters is
the total cost, as the other heuristic may create workdays with more extra time (which is
more expensive than using more workdays without extra time). Note also that the number
of times breaks are generated is higher when our heuristic isapplied. This can be simply
explained by the fact that fewer workdays are valid in the other more constrained case and
more pieces of work combinations to build up a workday are discarded in a preprocessing
step.

6. Conclusion and perspectives

In this paper, we describe a very fast break generation algorithm included in a
complex Crew Scheduling model. This algorithm is adapted toa new law that has just
passed in Brazil and states that bus drivers’ breaks may be split into several parts. We
showed that it is an improvement to allow the breaks to be strictly included in the interval
between the driver’s pieces of work, despite the idle time itcreates, because this leads to
much more possible valid workdays. With our customers’ configurations, this algorithm is
sufficient to generate satisfying breaks.

However, as it is greedy and focuses on returning few breaks,in few circunstances
our algorithm can generate bad solutions or can even fail to find one (removing a key in-
terval prematurely). One example of sub-optimal behaviourwould be a case containing
three break intervals with the one in between just a little shorter than the other ones. Our
algorithm would then discard the interval in the middle although it may lead to a solution

1616



XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

where both other break intervals are needed to satisfy the problem constraints, whereas
the discarded interval alone would have been sufficient. Nevertheless, in usual customer
instances, this particular kind of input hasn’t yet been found. This drawback could be
partly solved using a post-processing local search procedure to improve the solution, such
asBeer et al.(2008). There could also be a kind of backtrack, especially in the case the
algorithm fails. As it is mainly a constraint-based model, we could even study a solu-
tion using a constraint satisfaction approach such asWolf (2009) or Curtis et al.(1999) in
similar problems.

References

Beer, A., Gartner, J., Musliu, N., Schafhauser, W. and Slany, W. (2008). Scheduling
breaks in shift plans for call centers. InProceedings of PATAT 2008 - The 7th Inter-
national Conference on the Practice and Theory of Automated Timetabling. Montreal
(Canada).12

Chen, S., Shen, Y., Su, X. and Chen, H.(2013). A crew scheduling with chinese meal
break rules.Journal of Transportation Systems Engineering and Information Technology
13, 90–95.3

Curtis, S. D., Smith, B. M. and Wren, A. (1999). Forming bus driver schedules using
constraint programming. In BlackPool, ed.,The Pratical Application Company, volume
239. 12

Fournier, S. (2009). Branch-and-price algorithm for a real-life bus crew scheduling prob-
lem. In L. Buriol, M. Ritt and A. Benavides, eds.,ERPOSul 2009 Anais. Porto Alegre
(RS, Brazil).2

Musliu, N., Schafhauser, W. and Widl, M. (2009). A memetic algorithm for a break
scheduling problem. InThe 8th Metaheuristic International Conference (MIC 2009).
Hamburg (Germany).3

Rekik, M., Cordeau, J.-F. and Soumis, F.(2010). Implicit shift scheduling with multiple
breaks and work stretch duration restrictions.Journal of Scheduling 13, 49–75.3

Wolf, A. (2009). Constraint-based task scheduling with sequence dependent setup times,
time windows and breaks.GI Jahrestagung 2009 , 3205–3219.12

1617


	Introduction
	The Transit Bus Crew Scheduling Problem
	Solving the Crew Scheduling Problem from scratch
	Improving the crew using Local Search

	Generating breaks in a Transit Bus Crew Scheduling Problem
	Constraints
	Objectives

	Dedicated multi-stage heuristic
	Preprocessing step
	Defining the first and last break interval candidates
	Generating a valid break interval set
	Removing unnecessary break intervals
	Determining breaks inside the chosen intervals

	Computational results
	Conclusion and perspectives

